Implementing cooperative link diagnostic

Oleksij Rempel - ore@pengutronix.de

What could possibly go wrong?!

- Industrial and building automation challenges:
 - 10Base-T1L: 1000-2000 meter copper twisted pair.
 - Remote devices are hard to access
 - Mechanical and thermal stress
 - In field repair attempts
 - Animals

Variants of "broken"

- One of cables of twisted pairs is open
- Complete twisted pair is open.
- Short withing pair
- Short between pairs
- Short to ground
- ... many more ...

Currently available diagnostic

- selftest:
 - ethtool -t eth0
- cabletest
 - ethetool –cable-test eth0
- SQI
 - ethtool eth0 | grep -i sqi

Extending selftest

- It is possible to extend selftest. Local and remote system should cooperate with each other.
- remote PHY should be able to enable external loopback on request
- How to communicate with remote system?

Optimizing cable test

- No problems If cable is completely damaged or remote system is off
- If remote system is active, cable test is disturbed by autoneg FLPs.
- We need to understand more about cable testing and autoneg to optimize it.

Cable diagnostic with TDR

- Time-DomainReflectometery
- PHY is pulse generator and oscilloscope
- Precision depends on sampling rate
- Usual PHYs can get about ~80cm precision.

TDR: Open/Short recognition

TDR vs Autoneg

Variants of "broken"

- No signal
 - Good for cable testing. No interference from link partner.
 - No special handling is needed.

- Some signal is present
 - Cable testing is disturbed by autoneg pulses, attempt to create link or manually configured link.
 - Proposal: For the autoneg, use "remote fault" flag to request a "silence window" on the wire.

PHY Monitoring in 802.3ae

- There is a Link Fault Signaling mechanism in 10GE
 - Reside in Reconciliation Sublayer (RS)
 - To monitor link status between local RS & remote RS and perform link status notification
 - Sublayers within the PHY are required to detect faults that render a link unreliable

How this works

- Autonegotiation pulses run at lower frequency and less affected by partially damaged twisted pair.
- IEEE 802.3 defines standard to communicate by using autoneg pulses.
- How about to run IP over autoneg?;)

Autoneg FLP (Fast link pulses)

FLP: Link code word

Link code word

Figure 28–7—Base Page encoding

Link code word

- We can use "remote fault" (RF) flag to notify about some error state.
- If we want to be more specific we need read/write own pages and set "next page" (NP) flag.
- I can image to have following requests:
 - Silent autoneg for X amount of time
 - Enable remote loopback on the PHY or MAC
 - ...More ideas?...

Other pages

Figure 28–11—Message Page encoding

Figure 28–12—Unformatted Page encoding

Extended pages

18/2

Figure 28–13—Extended Message Page encoding

Kernel integration

- Initial patch set (v1) was exporting every thing to the user space.
- For v2 patches I'll need to move RF handling to the kernel.

Patch v1: add remote fault support

https://lore.kernel.org/all/20220608093403.3999446-1-o.rempel@pengutronix.de/

Thank you!

Questions?

